62. 不同路径 - 力扣(LeetCode)
思路:
- 
使用动态规划
 - 
- 
确定dp数组以及下标的含义
dp[i][j]的定义为:dp[i][j]代表到达[i,j]的路径数量
 - 
确定递推公式
- 状态转移方程为
dp[i][j] += dp[i - 1][j] + dp[i][j - 1]; 
 - 状态转移方程为
 - 
dp数组如何初始化
// 要初始化左边第一排和上边第一排的所有格子路径数为1 for(int i = 0; i < n; ++i) { dp[0][i] = 1; } for(int i = 0; i < m; ++i) { dp[i][0] = 1; } - 
确定遍历顺序
// 因为左边第一排和上面第一排已经初始化 for(int i = 1; i < m; ++i) { for(int j = 1; j < n; ++j) { } } 
 - 
 
我的AC代码
动态规划
// 时间复杂度O(n x m),空间复杂度O(n x m)
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for(int i = 0; i < n; ++i) {
            dp[0][i] = 1;
        }
        for(int i = 0; i < m; ++i) {
            dp[i][0] = 1;
        }
        for(int i = 1; i < m; ++i) {
            for(int j = 1; j < n; ++j) {
                dp[i][j] += dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n -1];
    }
};
标准答案
动态规划
// 时间复杂度O(n x m),空间复杂度O(n x m)
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};
动态规划(优化空间复杂度)
// 时间复杂度O(n x m),空间复杂度O(n)
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> dp(n);
        for (int i = 0; i < n; i++) dp[i] = 1;
        for (int j = 1; j < m; j++) {
            for (int i = 1; i < n; i++) {
                dp[i] += dp[i - 1];
            }
        }
        return dp[n - 1];
    }
};
数论方法
// 时间复杂度O(m),空间复杂度O(1)
class Solution {
public:
    int uniquePaths(int m, int n) {
        long long numerator = 1; // 分子
        int denominator = m - 1; // 分母
        int count = m - 1;
        int t = m + n - 2;
        while (count--) {
            numerator *= (t--);
            while (denominator != 0 && numerator % denominator == 0) {
                numerator /= denominator;
                denominator--;
            }
        }
        return numerator;
    }
};
63. 不同路径 II - 力扣(LeetCode)
思路:
- 
使用动态规划
 - 
- 
确定dp数组以及下标的含义
dp[i][j]的定义为:dp[i][j]代表到达[i,j]的路径数量
 - 
确定递推公式
// 遇到障碍物则赋为0 if(obstacleGrid[i][j] == 1) { dp[i][j] = 0; } else { dp[i][j] += dp[i -1][j] + dp[i][j - 1]; } - 
dp数组如何初始化
// 要初始化左边第一排和上边第一排的所有格子路径数为1 // 遇到障碍物就直接中断 for(int i = 0; i < m; ++i) { if(obstacleGrid[i][0] == 1) { break; } dp[i][0] = 1; } for(int i = 0; i < n; ++i) { if(obstacleGrid[0][i] == 1) { break; } dp[0][i] = 1; } - 
确定遍历顺序
// 因为左边第一排和上面第一排已经初始化 for(int i = 1; i < m; ++i) { for(int j = 1; j < n; ++j) { } } 
 - 
 
我的AC代码
动态规划
// 时间复杂度O(m x n),空间复杂度O(m x n)
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for(int i = 0; i < m; ++i) {
            if(obstacleGrid[i][0] == 1) {
                break;
            }
            dp[i][0] = 1; 
        }
        for(int i = 0; i < n; ++i) {
            if(obstacleGrid[0][i] == 1) {
                break;
            }
            dp[0][i] = 1; 
        }
        for(int i = 1; i < m; ++i) {
            for(int j = 1; j < n; ++j) {
                if(obstacleGrid[i][j] == 1) {
                    dp[i][j] = 0;
                }
                else {
                    dp[i][j] += dp[i -1][j] + dp[i][j - 1];
                }
            }
        }
        return dp[m - 1][n -1];
    }
};
标准答案
动态规划
// 时间复杂度O(m x n),空间复杂度O(m x n)
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
    if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};
动态规划(空间优化版)
// 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
// 空间复杂度:O(m)
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid[0][0] == 1)
            return 0;
        vector<int> dp(obstacleGrid[0].size());
        for (int j = 0; j < dp.size(); ++j)
            if (obstacleGrid[0][j] == 1)
                dp[j] = 0;
            else if (j == 0)
                dp[j] = 1;
            else
                dp[j] = dp[j-1];
        for (int i = 1; i < obstacleGrid.size(); ++i)
            for (int j = 0; j < dp.size(); ++j){
                if (obstacleGrid[i][j] == 1)
                    dp[j] = 0;
                else if (j != 0)
                    dp[j] = dp[j] + dp[j-1];
            }
        return dp.back();
    }
};
				
		
	
Comments NOTHING